基于 PPMgO:LN 晶体的连续波全光纤激光器 倍频特性

郝丽云^{1,2} 苏 岑^{1,3} 漆云凤¹ 刘 驰¹ 周 军¹

⁽¹中国科学院上海光学精密机械研究所,上海市全固态激光器与应用技术重点实验室,上海 201800) ²中国科学院大学,北京 100049

3云南大学物理科学技术学院物理系,云南昆明 650091

摘要 高功率光纤激光器与周期性极化非线性晶体相结合的频率转换技术,是实现可见及紫外波段激光输出的有效 技术手段。本文以线偏振输出的连续波全光纤化激光振荡器为基频光源,以 5%(摩尔分数)氧化镁掺杂的周期性极 化铌酸锂(PPMgO:LN)为倍频晶体,进行了单通倍频的实验研究,测量并分析了 PPMgO:LN 的温度调谐特性。控制 晶体温度为 26.9 °C,在基频光功率为 8.05 W时,实现了 17.84%的谐波转换效率,对应的倍频绿光功率为1.437 W。 关键词 激光器;光纤激光器;周期性极化掺氧化镁铌酸锂晶体;倍频

中图分类号 O436 文献标识码 A doi: 10.3788/CJL201340.0602007

Second Harmonic Gereration Characteristics of Continuous Wave All-Fiber Laser Oscillator in PPMgO:LN

Hao Liyun^{1,2} Su Cen^{1,3} Qi Yunfeng¹ Liu Chi¹ Zhou Jun¹

¹ Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques,

Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

² Univesity of Chinese Academy of Sciences, Beijing 100049, China

³ Department of Physics, School of Physics Science and Technology, Yunnan University,

Kunming, Yunnan 650091, China

Abstract The combination of periodic nonlinear polarization crystal and fiber laser is an effective technological mean to achieve visible and ultraviolet band laser output. In this paper, linearly polarized all-fiber laser oscillator is used as the pumping source, and single-pass, second harmonic generation in 5% (mole fraction) MgO doped periodically poled lithium niobate (PPMgO:LN) nonlinear crystal is demonstrated. The temperature tuning characteristics are analyzed. Keeping the crystal temperature at 26.9 °C, the green light output power of 1.437 W is achieved at the pump fundamental power of 8.05 W with the best harmonic efficiency of 17.84%.

Key words lasers; fiber laser; periodically poled MgO-doped lithium niobate; frequency-doubling OCIS codes 140.3460; 140.3510; 190.4370; 140.3515

1 引 言

基于1μm波段固体激光器倍频的小型化绿光激 光器在激光显示、医疗和科研等领域有着重要应 用^[1~3]。掺镱光纤激光器与常规的固体激光器相比, 具有光束质量好、转换效率高、结构紧凑和可靠性高 等一系列优点^[4~6],基于准相位匹配技术的高 MgO 掺杂[大于 4.6%(摩尔分数)]的周期性极化掺氧化镁 铌酸锂(PPMgO:LN)晶体不仅具有高的非线性系数

收稿日期: 2013-02-27; 收到修改稿日期: 2013-04-01

基金项目:国家 863 计划(2011AA030201)和国家自然科学基金(60907045)资助课题。

作者简介:郝丽云(1987-),女,硕士研究生,主要从事高功率光纤激光器及非线性频率变化等方面的研究。

E-mail: haoliyun0801 @163.com

导师简介:周 军(1972-),男,研究员,博士生导师,主要从事高功率光纤激光技术、准分子激光技术等方面的研究。 E-mail: junzhousd@mail.siom.ac. cn 和高的光折变损伤阈值,且可实现室温下的准相位匹 配[7~9]。将光纤激光器与该周期性极化晶体相结合 的倍频(SH)绿光激光技术,是实现高效率小型化绿 光激光器的一个重要技术途径。1998年,英国帝国 学院采用连续波的光纤激光放大器为基频光源,以 周期极化铌酸锂(PPLN)晶体为倍频晶体,获得了 440 mW 的连续波绿光激光输出^[10]。2008 年,澳大 利亚 Griffith University 的 Pullen 等[11] 以 1029 nm 单频光纤放大器为基频光源,利用 50 mm 长的 PPMgO:LN 晶体,产生了 2.3 W 的 514.5 nm 绿 光,最大谐波转化效率为 32%。2010年,西班牙地 中海科技园 ICFO 学院的 Samanta 等^[12]以单频保 偏光纤放大器为基频光源,采用3个30mm长的周 期极化钼酸锂(PPSLT)晶体,通过串联单通倍频结 构,在基频光功率为10W时,获得了56%的最大谐 波转换效率。在上述的连续波光纤激光倍频实验报 道中,所用的基频光源均为光纤放大器主振荡功率 放大(MOPA)结构的高功率单频激光,对于 MOPA 结构的系统,由于采用了单频种子光源、光隔离器和 滤波器等器件,基频光源系统结构较为复杂。

本文以连续波光纤激光振荡器为基频光源,研究 了 PPMgO:LN 晶体的单通倍频特性。采用自行研制 的基于保偏光纤光栅(PM-FBG)快慢轴交叉对准的 新型线偏振、窄谱宽光纤激光器,利用尺寸为1 mm× 2.8 mm×10 mm的 5%(摩尔分数,下同)掺杂 PPMgO:LN 为倍频晶体进行单通倍频实验研究。从 理论和实验上研究了 PPMgO:LN 晶体的温度调谐 特性及温度调谐特性随基频光入射方向及基频光波 长的变化关系。控制晶体温度在 26.9 ℃,基频光功 率为8.05 W时,实现了 17.84%的谐波转换效率,此 时对应的绿光激光输出功率为 1.437 W。

2 实验装置

基于 PPMgO:LN 晶体的光纤激光单通倍频实 验装置如图1所示,包括基频光源和倍频模块两部 分。基频光源为自行研制的基于保偏光纤光栅快慢 轴交叉对准技术的线偏振、窄谱宽单横模全光纤激 光振荡器,激光振荡腔由一对保偏光纤光栅和保偏 有源光纤构成^[13],该光纤激光器的输出激光波长约 为1064 nm。基频光源准直输出后直接连接倍频模 块,倍频模块中主要包括 $\lambda/2$ 波片、聚焦透镜 L2、倍 频晶体(PPMgO:LN)、温控炉、准直透镜 L3 和双色 片。准直基频光通过 λ/2 波片(HP),经聚焦透镜 L2 聚焦后入射到 PPMgO:LN 晶体中,温控炉的控制精 度为 0.1 ℃, 倍频光和剩余基频光经 L3 准直后, 再通 过一个对 1064 nm 高反且对 532 nm 高透的双色片, 从而获得准直的绿光输出。倍频模块中,λ/2 波片 用以调整基频线偏光的偏振方向以使其与倍频晶体 所要求的偏振方向相匹配。在该实验装置中,基频 光源主系统和准直透镜通过单模保偏传输光纤连接, 从而实现了倍频模块和基频光源主系统之间的分离 布局,便于进行分散式热管理,这在投影显示等具体 应用中具有优势。实验中所用的 PPMgO:LN 晶体为 北京中视中科光电技术有限公司提供的5% MgO 掺 杂的 PPMgO:LN,晶体的尺寸为1 mm×2.8 mm× 10 mm,极化周期为 6.96 µm,晶体两端均镀有对 532 nm和 1064 nm 的增透膜。与主控振荡功率放大 (MOPA)结构的基频光源(激光波长取决于种子光 源)不同,以光纤光栅为腔镜的光纤激光振荡器基频 光源在不同的输出功率下,其中心波长略有变化。图 2 为基频光源的输出中心波长随输出功率的变化曲 线,基频光功率每升高1W,中心波长向长波方向漂 移 0.0035 nm。图 3 为基频光输出功率为22.8 W时 测量的光谱图,基频光谱3dB带宽为0.1 nm。

Fig. 1 Experimental setup for single-pass frequency-doubling of fiber laser oscillator

图 3 光谱特性 Fig. 3 Spectral characteristics

3 理论模拟及实验结果分析

3.1 理论模拟

根据非线性介质中传输的耦合波理论,推导二 次谐波麦克斯韦方程组,得出基横模激光束近场小 信号倍频转化效率^[14]为

$$\eta = \frac{8\omega^2 d^2 L^2}{n_{\omega}(\lambda_{\omega}, T)^2 n_{2\omega}(\lambda_{2\omega}, T) c^3 \varepsilon_0} \times \frac{P_{\omega}}{\pi \omega_0^2} \times \operatorname{sinc}^2 \left[\frac{\Delta k(\lambda_{\omega}, T)L}{2} \right], \qquad (1)$$

式中 ω 为基频光波角频率,d为非线性介质的非线 性系数,L为非线性介质的长度, λ_{ω} 为基频光在真 空中的波长, $\lambda_{2\omega} = \lambda_{\omega}/2$ 为倍频光在真空中的波长, $n_{\omega}(\lambda_{\omega},T)$ 、 $n_{2\omega}(\lambda_{2\omega},T)$ 分别为非线性晶体中基频光 波、倍频光波的折射率,c为光速, ϵ_{0} 为自由空间的介 电常数, $P_{\omega}/(\pi\omega_{0}^{2})$ 为基频光功率密度。铌酸锂晶体 的最大非线性系数为 $d_{33} = 16.7 \text{ pm/V}$,因此试验中 采用的为 e+e=e 准相位匹配方式,晶体温度为 T 时倍频光和基频光相位适配系数 $\Delta k(\lambda_{\omega},T)$ 为

$$\Delta k(\lambda_{\omega}, T) = k_{2\omega}(\lambda_{2\omega}, T) - 2k_{\omega}(\lambda_{\omega}, T) - m \frac{2\pi}{\Lambda(\lambda_{\omega}, T)}, \quad m = 1, 3, 5, \cdots$$
(2)

$$k_{\omega}(\lambda_{\omega},T) = 2\pi n_{\omega}(\lambda_{\omega},T)/\lambda_{\omega}, \qquad (3)$$

$$k_{2\omega}(\lambda_{2\omega},T) = 2\pi n_{2\omega}(\lambda_{2\omega},T)/\lambda_{2\omega}, \qquad (4)$$

式中 $\Lambda(\lambda_{\omega}, T)$ 是晶体非线性系数 d_{33} 方向的极化翻转光栅周期。当 $\Delta k = 0$ 时,获得最大的二次谐波转换效率,满足相位匹配条件的光栅周期 $\Lambda_0(\lambda_{\omega}, T)$ 为:

$$\Lambda_0(\lambda_{\omega},T) = \frac{\lambda_{\omega}}{2[n_{2\omega}(\lambda_{2\omega},T) - n_{\omega}(\lambda_{\omega},T)]}, \quad (5)$$

5% MgO 掺杂的 PPMgO:LN 晶体的折射率与晶体 温度 *T* 和光波波长 λ 的关系为^[15]:

$$n_{\rm e}^2 = a_1 + b_1 f + \frac{a_2 + b_2 f}{\lambda^2 - (a_3 + b_3 f)^2} + \frac{a_4 + b_4 f}{\lambda^2 - a_5^2} - a_6 \lambda^2, \qquad (6)$$

 $f = (T - T_R)(T + T_R + 2 \times 273.16),$ (7)

式中 $T_{\rm R}$ 为参考温度, PPMgO: LN 晶体的光栅周期 为

$$\Lambda(T) = \Lambda(T_{\rm R}) [1 + \alpha(T - T_{\rm R}) + \beta(T - T_{\rm R})^2].$$
(8)

(8)式中各计算参数如表1所示。

表 1 折射率 n_e 及光栅周期 Λ(T)计算参数

Table 1 Calculated parameters of refractive index and

1 1	
thermal	expansion

Parameters	Value	Parameters	s Value
<i>a</i> ₁	5 756	h_2	4.7×10^{-8}
<i>a</i> ₁	0 0983	b_2	6.113×10^{-8}
a2	0 202	b_{4}	1.516×10^{-4}
<i>a</i> ₃	189 32	<i>0</i> 4	1.44×10^{-5}
<i>a</i> -	12 52	ß	7.1×10^{-9}
<i>a</i> ₅	1.32×10^{-2}	ہ م	1.0642154×10^{-6}
h_1	2.86×10^{-6}	$\Lambda(T_{\rm P})$	6.96×10^{-6}
b_1	2.86 $\times 10^{-6}$	$\Lambda(T_{\rm R})$	6.96×10^{-6}

满足相位匹配条件的 PPMgO:LN 极化周期 $\Lambda_0(\lambda_{\omega}, T)$ 和实际 PPMgO:LN 极化周期 $\Lambda(T)$ 随温 度的变化关系曲线如图 4 所示。随着温度的升高, $\Lambda_0(\lambda_w, T)$ 逐渐减小,而 $\Lambda(T)$ 膨胀变大,当两者相

图 4 最佳匹配温度的计算

等时达到最佳匹配温度。在基频光垂直入射的情况 下,晶体的温度控制在46 ℃时,得到最佳匹配温度, 此时谐波转换效率最高。可以通过微调基频光的入 射方向来增加基频光入射方向上的 $\Lambda(T)$,降低 PPMgO:LN晶体二次谐波的最佳匹配温度,但是 对应的谐波转化系数也会降低。计算所得的最佳匹 配温度随基频光波长变化关系如图 5 所示,随着基 频光向长波方向漂移,晶体倍频所需的最佳匹配温 度变高,平均为 1.66 ℃/0.06 nm。

3.2 实验结果分析

图 6 为 PPMgO:LN 晶体重新放置前(28.8 ℃) 后(26.9 ℃)晶体倍频的温度调谐曲线(同一基频光 源垂直晶体入射)。可以看到晶体重新放置前后晶 体的最佳匹配温度改变,这是由于晶体重新放置带 来的基频光入射方向(相对于垂直入射到晶体)的随 机偏差不同,导致基频光通过方向上的晶体的极化 周期不同,从而准相位匹配倍频所需的最佳匹配温 度不同。实验结果与图 4 理论计算分析结果相符,进 一步分析认为晶体重新放置之后基频光的入射方向 偏差变大。温度调谐的半峰全宽保持在 2.8 ℃,与计

Fig. 6 Temperature tuning curves with different angles

算结果 2.73 ℃基本相符。图 7 为不同波长基频光 (基频光入射方向和功率相同)入射情况下晶体的温 度调谐曲线。随着基频光向长波方向漂移,晶体倍频 所需最佳匹配温度升高,平均为 1 ℃/0.06 nm,与计 算结果 1.66 ℃/0.06 nm 趋势上相符。图 8 为基频 光不同功率入射情况下(基频光波长和入射方向相 同)PPMgO:LN 晶体倍频的温度调谐曲线。图 8(a) 和(b)分别为基频光功率为 5.71 W 和 15.5 W 时的 温度调谐曲线。可见随着基频光功率的升高,由于 基频光被吸收转化成热量导致晶体倍频所需最佳匹 配温度降低,基频光功率为 15.5 W 时,温控炉的温 度已不能长时间稳定控制(很短时间内由设定的 17.7 ℃跳为 24.4 ℃),图 8(b)温度调谐曲线根据瞬 时探测温度得出,实际的最佳匹配温度比 22.4 ℃ 要高。

图 9 为聚焦透镜 L2 焦距 f = 100 mm 时倍频光 功率及效率随基频光功率变化关系图,保持 PPMgO:LN 晶体控制在最佳匹配温度为26.9 ℃ (26.9 ℃为基频光功率为 8.5 W 时晶体的最佳匹配 温度),在基频光功率为 8.05 W 时,获得了 1.437 W 的绿光输出,此时谐波转换效率最高为17.84%。 随着基频光功率的继续提高,由于基频光功率被吸 收而产生大量的热量,以及基频光波长随着基频光 功率增高而向长波方向漂移,使得晶体倍频温度不 再匹配而出现谐波转换效率下降的现象。在实验中 通过提高基频光功率,可以获得更高的瞬时绿光功 率输出,但由于基频光功率的被吸收而产生大量的 热量,使得晶体温度迅速偏离最佳倍频匹配温度,因 此不能得到稳定的高功率绿光输出。下一步将通过 改进晶体温控技术和采用更长的 PPMgO:LN 晶体 来提高绿光输出功率及谐波转换效率。

图 8 基频光功率分别为(a)5.71 W 和(b)15.5 W 时的温度调谐曲线

Fig. 8 Temperature tuning curves at different fundamental powers of (a) 5.71 W and (b) 15.5 W

4 结 论

采用实验室自制的准直输出的基于 PM-FBG 快慢轴交叉对准技术的线偏振、窄谱宽单横模全光 纤激光振荡器,以北京中视中科光电技术有限公司 提供的 5%(摩尔分数)氧化镁掺杂的 PPMgO:LN 为倍频晶体,进行了单通倍频的实验研究。理论和 实验研究了该种晶体的温度调谐特性以及温度调谐 特性随基频光波长与入射方向的变化关系。晶体温 度控制在 26.9 °C,在基频光功率为 8.05 W 时,获 得最大谐波效率为 17.84%,此时有 1.437 W 的绿 光输出。晶体倍频所能获得的最大谐波功率受到基 频光功率被吸收而引起的晶体温度升高以及基频光 波长随基频光功率漂移的影响,导致晶体倍频温度 不匹配。下一步将通过改进晶体温控技术和采用更 长的 PPMgO:LN 晶体来提高绿光输出功率及谐波 转换效率。

参考文献

- 1 Changqing Xu, Yi Gan, Jian Sun. MgO: PPLN frequency doubling optical chips for green light generation: from lab research to mass production[C]. SPIE, 2012, 8280: 828005
- 2 M. Maiwald, S. Schwertfeger, R. Güther *et al.*. 600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO₃ bulk crystal[J]. *Opt. Lett.*, 2006, **31**(6): 802~804
- 3 Jiao Mengli, Lü Xinjie, Liu Chi et al.. Second harmonic generation characteristics of continuous wave narrow-linespectrum all fiber amplifier in PPSLT[J]. Chinese J. Lasers, 2012, 39(3): 0302005

焦梦丽,吕新杰,刘 驰等.周期极化钽酸锂倍频窄谱线全光纤连续激光放大器特性[J].中国激光,2012,**39**(3):0302005

- 4 Chi Liu, Yunfeng Qi, Yaqian Ding *et al.*. All-fibered high power single-frequency, linearly polarized ytterbium-doped fiber amplifier[J]. *Chin. Opt. Lett.*, 2011, 9(3); 031402
- 5 Liu Houkang, He Bing, Zhou Jun *et al.*. Coherent beam combination of two nanosecond fiber amplifiers by an all-optical feedback loop[J]. *Opt. Lett.*, 2012, **37**(18): 3885~3887
- 6 He Jing, Zhao Hongming, Zhou Jun *et al.*. Single-ended fiber coupled acousto-optic *Q*-switched all-fiber laser[J]. *Chinese J. Lasers*, 2012, **39**(5): 0502008
 何 晶,赵宏明,周 军 等. 单端光纤耦合的声光调 *Q*全光纤化 光纤激光器[J]. 中国激光, 2012, **39**(5): 0502008
- 7 G. Zhong, J. Jin, Z. Wu. Measurements of optically induced refractive index damage of lithium niobate doped with different concentrations of MgO [C]. New York: In Proc. 11th International Quantum Electronics Conference, 1980, 631
- 8 N. Pavel, I. Shoji, T. Taira *et al.*. Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO₃ crystal[J]. *Opt. Lett.*, 2004, **29**(8): 830~832
- 9 F. J. Kontur, I. Dajani, Yalin Lu et al.. Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN[J]. Opt. Express, 2007, 15(20): 12882~12889
- 10 S. A. Guskov, S. Popov, S. V. Chernikov *et al.*. Second harmnic generation around 0.53 μ m of seeded Yb fiber system in periodically poled lithium niobate [J]. *Electron. Lett.*, 1998, **34**(14): 1419~1420
- 11 Michael Gregory Pullen, Justin James Chapman, Dave Kielpinski. Efficient generation of >2 W of green light by singlepass frequency doubling in PPMgLN[J]. Appl. Opt., 2008, 47(10): 1397~1400

- 12 G. K. Samanta, S. Chaitanya Kumar, Kavita Devi *et al.*. Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency[J]. *Opt. Lett.*, 2010, **35**(20): 3513~3515
- 13 Jianhua Wang, Lei Zhang, Jinmeng Hu *et al.*. Efficient linearly polarized ytterbium-doped fiber laser at 1120 nm [J]. *Appl. Opt.*, 2012, **51**(17): 3801~3083
- 14 Qian Shixiong, Wang Gongming. Nonlinear Optics-Principles and Progress[M]. Shanghai: Fudan University Press, 2001. 70~73 钱士雄,王恭明. 非线性光学-原理与进展[M]. 上海:复旦大学

出版社,2001.70~73

- 15 O. Gayer, Z. Sacks, E. Galun *et al.*. Temperature and wavelength dependent refractive index equation for MgO-doped congruent and stoichiometric LiNbO₃ [J]. *Appl. Phys.*, 2008, B91: 343~348
- 16 Y. S. Kim, R. T. Smith. Thermal expansion of lithium tantalate and lithium niobate single crystal [J]. Appl. Phys., 1969, 40(11): 4637~4641

栏目编辑: 宋梅梅